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ABSTRACT

Diabetes, a chronic metabolic disorder characterized by elevated blood glucose levels, poses a significant
global health challenge. This study explores the application of machine learning techniques to predict the
glycemic index (GI) of rice, a staple food with substantial implications for diabetes management. Leveraging
a comprehensive data-set of 53 rice accessions, the research develops a decision tree regression model to
estimate the predictive glycemic index (pGl) using in vitro starch hydrolysis (SH) data. The research
methodology involved analyzing starch hydrolysis percentages at multiple time points and calculating area
under the curve (AUC) values across various intervals. The decision tree regressor was trained on 80% of
the data-set and evaluated using performance metrics including Mean Squared Error (MSE), Root Mean
Squared Error (RMSE), and R-squared (R?). The model demonstrated exceptional predictive capabilities,
with an R value of 0.9914, explaining approximately 99.14% of variance in pGl data. Notably, feature importance
analysis revealed that the AUC for the initial time period was the most influential predictor, contributing
99.30% to the model’s predictive power. This emphasizes the critical role of early-stage starch hydrolysis
dynamics in determining glycemic response. The study highlights the potential of ML techniques in nutritional
biochemistry, providing a robust, interpretable approach for predicting Gl. By integrating computational
modeling with biochemical analysis, the research offers a scalable framework for high-throughput screening
of functional foods and supports the development of personalized dietary interventions.
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Introduction

Diabetes represents a chronic metabolic syndrome
characterized by dysregulated glucose metabolism,
manifesting through two primary pathophysiological
mechanisms: impaired insulin production (type 1 diabetes)
or compromised insulin utilization (type 2 diabetes). The
escalating global prevalence of this chronic condition has
prompted intensified research into predictive and
preventive strategies. Contemporary machine learning
approaches have emerged as sophisticated tools for risk
stratification, integrating multifaceted clinical and
demographic variables to develop predictive models for
type 2 diabetes onset (Bonsembiante et al., 2021;
Krishnanetal., 2021; Mondal et al., 2024). Concurrently,
nutritional epidemiology has illuminated the pivotal role
of dietary factors, with particular emphasis on the

glycemic index (Gl) as a critical determinant of metabolic
health. Rice, a dietary staple across numerous global
regions, has been identified as a nutritional component
with significant metabolic implications. Its elevated
glycemic index demonstrates potential contributors to type
2 diabetes pathogenesis (Chang et al., 2014; Salman et
al., 2025; Krishnan et al., 2021). The glycemic response
of rice is intricately modulated by its molecular starch
architecture, encompassing crystalline structural
configurations, amylose-to-amylopectin proportions, and
the complex molecular interactions within amylopectin
polymers (Li et al., 2023).

Previous studies have demonstrated both negative
and positive correlation between amylose content and
GlI, with low-amylose rice varieties showing higher Gl
values (Durmus, 2024; Frei et al., 2003; Srikaeo and
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Sangkhiaw, 2014). Additionally, the physical
characteristics of starch, such as granule size and
crystallinity, also impact digestibility, as higher crystallinity
and limited swelling power are associated with increased
resistance to enzymatic hydrolysis. Factors like
gelatinization and pasting properties further influence GlI,
as higher gelatinization temperatures and resistant gel
structures reduce enzymatic degradation rates. Alongside
starch properties, components such as dietary fiber,
proteins, lipids, and bioactive compounds like phytic acid
contribute to modulating GI by delaying digestion or
inhibiting enzymatic activity (Hernandez-Jaimes et al,
2015; Li et al, 2023; Mondal et al, 2021). Cooking and
processing techniques further alter G by modifying starch
structures. While these relationships are well-

documented, the application of ML offers a promising
approach to unraveling the complex interplay of these
factors. Advanced ML algorithms, including XGBoost,
Random Forest, and CatBoost, provide powerful tools
for predicting GI with high accuracy by analyzing diverse
input variables, such as amylose content, crystallinity, and
gelatinization parameters (Durmus, 2024). These
algorithms leverage large datasets, uncovering subtle
patterns to enhance the understanding and optimization
of rice products with tailored GI values. Therefore,
understanding the factors that influence the GI of rice
and developing accurate predictive models using ML
techniques can have significant implications for the
prevention and management of diabetes. A basic outline
on various ML tools are provided in Fig. 1.
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Fig. 1 : Schematic representation of machine learning: types, workflow and key algorithms. a) The image illustrates the hierarchy
of Artificial Intelligence (Al), with Machine Learning (ML) as a subset and Deep Learning (DL) as a further specialization
within ML. b) It highlights four types of ML: supervised, unsupervised, semi-supervised, and reinforcement learning. c)
The workflow includes project setup, data preparation, modeling, and deployment. d) Key ML algorithms such as
regression, decision trees, Support Vector Machine (SVM), random forests, and boosting methods like AdaBoost,
emphasizing the diverse tools used in ML for various problem-solving approaches.
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This current study developed a decision tree model
system for accurate predictive glycemic index (pGl)
estimation using in vitro starch hydrolysis (SH) data from
53 rice accessions, as described by Salman et al., 2025.
The model aims to streamline the process of screening
rice accessions, offering improved accuracy and
efficiency compared to conventional methods. This
approach not only facilitates targeted crop breeding for
rice varieties with desirable Gl characteristics but also
supports the rapid identification of promising accessions
for further research and development. By integrating ML
with biochemical analysis, the study provides a robust
tool for advancing the precision and speed of GI prediction
in rice breeding programs (Salman et al., 2025).

Materials and Methods
Data for analysis

The dataset utilized for ML analysis was derived from
an in-house study conducted in our laboratory, building
on the findings of Salman et al. (2025). This data-set
comprised SH data collected at 10 time points (SHO, SH5,
SH10, SH20, SH30, SH45, SH60, SH90, SH120, SH180,
eg: SH5 represents starch hydrolysis at 5 minutes) for 53
rice accessions. Alongside the SH data, additional
parameters such as pGl, total starch (TS) content and
inherent glycemic potential were included to enhance the
analysis.

To further capture the dynamic nature of SH, the
area under the curve (AUC) was calculated for various
time intervals using GraphPad Prism (version 10.1.1).
These intervals included both cumulative and segment-
specific combinations:

e Cumulative AUCs: (0-5), (0-10), (0-20), (0-
30), (0-45), (0-60), (0-90), (0-120), (0-180)

e Segment-specific AUCs: (5-10), (5-20), (5-
30), (5-45), (5-60), (5-90), (5-120), (5-180),
(10-20), (10-30), (10-45), (10-60), (10-90),
(10-120), (10-180), (20-30), (20-45), (20-60),
(20-90), (20-120), (20-180), (30-45), (30-60),
(30-90), (30-120), (30-180), (45-60), (45-90),
(45-120), (45-180), (60-90), (60-120), (60-180),
(90-120), (90-180), and (120-180).

The calculated AUC values, in combination with SH
data and IGP, provided a comprehensive framework for
training ML models. This high-resolution data-set allowed
for precise pattern recognition and predictive modeling
of glycemic responses in rice accessions, enabling
accurate and robust pGlI estimation.

Decision tree regressor model development
To capture the non-linear relationships within the

data-set, we employed a decision tree regression
algorithm, a ML technique that iteratively partitions the
data into subsets based on the most informative features.
This approach is well-suited for modeling complex
interactions between variables that may elude traditional
linear regression methods.

Model Training and Evaluation

The data-set was divided into training and testing
subsets, with 80 % allocated to training and 20 % to testing.
A fixed random seed (random state: 42) was used to
ensure reproducibility. The decision tree regression model
was trained on the training subset and subsequently
evaluated using multiple performance metrics. R-squared
(R?) was calculated to determine the proportion of
variance in the target variable (pGl) that the model could
explain. The Mean Squared Error (MSE) was used to
assess the average squared difference between the
observed and predicted values, while the Root Mean
Squared Error (RMSE) provided an interpretable measure
of prediction error expressed in the same units as the
target variable.

GraphPad Prism 10.1.1 was employed for calculating
the AUC and other statistical analyses. Google Colab
was used for implementing decision tree models and
conducting data analysis, providing an interactive and
collaborative computational environment (Google Colab,
n.d., https://research.google.com/colaboratory/fag.html).

Feature importance Analysis

To quantify the contribution of each feature in
predicting the pGl, the importance scores of all predictor
variables were extracted from the trained model. These
scores provide insights into the relative significance of
features in the model’s decision-making process,
highlighting the key parameters driving Gl prediction.

Visualizations

The decision tree model was visualized to provide an
intuitive representation of the data partitions and the
predictive hierarchy of variables. Additionally, a scatter
plot of observed versus predicted pGl values was created
to evaluate the model’s performance. A regression line
was overlaid on the plot to compare the predicted values
against a perfect prediction scenario, thereby visually
assessing the model’s accuracy.

Results and Discussion
Decision tree model analysis for pGIl prediction

The decision tree regressor was employed to predict
the pGI based on 55 features, including starch hydrolysis
percentages (SH%), AUC, TS and IGP. The decision
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tree algorithm was chosen for its ability to handle non-
linear relationships and interactions between variables,
as well as its inherent interpretability. By recursively
partitioning the data, the model constructs a tree structure
where each node represents a decision rule based on
feature thresholds, and the terminal leaf nodes represent
predicted pGl values. This hierarchical structure enables
the model to learn complex patterns and interactions,
making it particularly suited for modeling the intricate
relationships observed in in vitro digestion datasets.

The model operates by minimizing the variance in
the target variable (pGl) within each partition, ensuring
that the splits are optimal for prediction accuracy. This
approach also allows for an intuitive understanding of
the decision-making process, as each branch of the tree
can be visualized to trace the pathway leading to specific
predictions. By leveraging this capability, the decision tree
model serves as a robust and interpretable tool for
predicting pGl from biochemical datasets.

Model performance

The data-set was split into training and testing subsets,
allocating 80% for training and 20% for testing, with a
fixed random state of 42 to ensure reproducibility. The
model’s performance was assessed using the following
metrics:

1. Mean Squared Error (MSE): 0.9610

This metric quantifies the average squared difference
between the observed and predicted pGl values, with a
lower value indicating better predictive accuracy.

2. Root Mean Squared Error (RMSE): 0.9803

By taking the square root of the MSE, the RMSE
provides a more interpretable measure of prediction error
in the same units as the target variable.

3. R-squared (R?): 0.9914

This value indicates that the model explains
approximately 99.14% of the variance in the pGl data,
demonstrating its ability to capture the underlying patterns
effectively.

The low MSE and RMSE values, combined with the
high R2, highlight the model’s accuracy and robustness in
predicting pGl from the provided features.

Feature Importance Analysis

To gain insights into the model’s decision-making
process, feature importance was analyzed. The results
revealed that AUC (0-5) was the most influential feature,
contributing 99.30% to the model’s predictive power. This
finding underscores the critical role of earlySH dynamics
in determining the glycemic response.

In contrast, features such as AUC (0-45) and AUC
(30-45) contributed minimally, with respective importance
values of 0.48% and 0.07% (Table 1). These differences
reflect the diminishing relevance of later time points in
predicting pGl, likely due to the plateauing behavior of
SH after the initial phase. The stark contrast in feature
importance highlights the dominance of early hydrolysis
events in driving pGI predictions and provides valuable
insights for future experimental designs focusing on the
early digestion phase.

Model Visualization

To elucidate the decision-making process, the
decision tree structure was visualized. The tree illustrates
how feature thresholds are used at each node to split the
data, ultimately leading to predictions at the leaf nodes.
This graphical representation aids in interpreting the
criteria used for predictions and provides a clear
understanding of the relationships between features and
pGl. Model of the tree developed is provided in Fig. 2.

Prediction analysis and interpretation

A scatter plot comparing predicted mGI (ML based
Gl) values (via the decision tree regressor) against
experimental pGl values (via in vitro digestion)

Table 1: Feature Importances in Decision Tree Model for
Predicted Glycemic Index (pGl) Prediction. The table
lists the relative importance of each feature in
predicting pGl using the decision tree regressor
model. The abbreviation AUC refers to the Area
Under the Curve of starch hydrolysis at different
time intervals (e.g., AUC (0-5) indicates the area
under the curve from 0 to 5 minutes). TS denotes
Total Starch, and SH60 represents Starch Hydrolysis
at 60 minutes. The feature importance values indicate
the contribution of each feature to the predictive
accuracy of the model, with AUC (0-5) being the
most significant predictor, accounting for 99.30%
of the model’s overall predictive power.

Features Feature importance
AUC (0-5) 0.9930
AUC (0-45) 0.0048
AUC (30-45) 0.0007
AUC (0-10) 0.0003
AUC (90-180) 0.0002
AUC (10-20) 0.0001
AUC (5-45) 0.0001
AUC (30-60) 0.0001
TS 0.0001
AUC (0-90) 0.0001
SH60 0.0001
AUC (5-180): 0.0001
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Fig. 2 : Decision tree for estimating predictive Glycemic Index (pGl). a) Decision tree derived the from the data set b) Enlarged
portion of the above tree: The node splits based on the AUC (0-5) feature, with the squared error, sample number, and
corresponding pGl value displayed. This split illustrates how the model uses AUC (0-5) as a critical decision point to
minimize prediction error, guiding the tree in classifying samples into specific pGl categories (AUC-Area Under the

Curve).
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Fig. 3 : Scatter plot analysis for decision tree regressor model
(R%:0.9914).

demonstrated a strong alignment between predicted and
observed data. The regression line, plotted in red, closely
follows the data points, reflecting the model’s accuracy
and reliability, R% 0.9914 (Fig. 3). Thus, decision tree
regressor provides a robust and interpretable model for
predicting pGl. The analysis highlights the importance of
specific features and validates the model’s accuracy
through various performance metrics.

The dominance of early time point AUC in the feature
importance analysis aligns with the physiological relevance

of early glucose release in determining glycemic response.
This reinforces the importance of capturing rapid SH
dynamics in predicting GI. The minimal contribution of
later AUCSs suggests that the saturation phase of hydrolysis
plays a negligible role in influencing pGI outcomes, aligning
with prior observations of plateauing behavior in enzymatic
starch breakdown. These findings aligns with the previous
study by Salman et al. (2025).

Conclusion

This study demonstrates the efficacy of a decision
tree regressor for predicting the pGl using an extensive
data-set derived fromin vitro digestion models. The model
exhibited exceptional predictive performance, with high
R? values (0.9914) and low error metrics, underscoring
its capacity to capture the complex, non-linear
relationships inherent in glycemic response data. Notably,
the feature importance analysis identified AUC (0-5) as
the dominant variable driving pGl predictions, aligning
with the critical role of early-stage SH in glycemic
outcomes. By visualizing the tree structure and conducting
a comprehensive feature analysis, this study bridges the
gap between computational modeling and biochemical
interpretation, advancing the understanding of Gl
dynamics. Integrating advanced ensemble techniques or
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explainable Al tools could further refine the predictive
framework, enhancing its precision and transparency. This
research underscores the transformative potential of ML
in nutritional biochemistry, offering a robust, scalable, and
interpretable approach for predicting GI. The findings
not only pave the way for high-throughput screening of
functional foods but also provide a foundation for the
development of integrative, Al-driven frameworks in
nutritional science, ultimately contributing to the
advancement of personalized dietary interventions and
public health initiatives.
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